Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
J Am Chem Soc ; 146(18): 12702-12711, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683963

RESUMO

Oligomeric species populated during α-synuclein aggregation are considered key drivers of neurodegeneration in Parkinson's disease. However, the development of oligomer-targeting therapeutics is constrained by our limited knowledge of their structure and the molecular determinants driving their conversion to fibrils. Phenol-soluble modulin α3 (PSMα3) is a nanomolar peptide binder of α-synuclein oligomers that inhibits aggregation by blocking oligomer-to-fibril conversion. Here, we investigate the binding of PSMα3 to α-synuclein oligomers to discover the mechanistic basis of this protective activity. We find that PSMα3 selectively targets an α-synuclein N-terminal motif (residues 36-61) that populates a distinct conformation in the mono- and oligomeric states. This α-synuclein region plays a pivotal role in oligomer-to-fibril conversion as its absence renders the central NAC domain insufficient to prompt this structural transition. The hereditary mutation G51D, associated with early onset Parkinson's disease, causes a conformational fluctuation in this region, leading to delayed oligomer-to-fibril conversion and an accumulation of oligomers that are resistant to remodeling by molecular chaperones. Overall, our findings unveil a new targetable region in α-synuclein oligomers, advance our comprehension of oligomer-to-amyloid fibril conversion, and reveal a new facet of α-synuclein pathogenic mutations.


Assuntos
alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Doença de Parkinson/metabolismo , Motivos de Aminoácidos
2.
Methods Mol Biol ; 2778: 259-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478283

RESUMO

Chemical crosslinking-mass spectrometry (XL-MS) is an established tool that can be used to study the architecture and dynamics of proteins and protein assemblies. Here the application of XL-MS to study outer membrane proteins (OMPs) and their interactions with periplasmic chaperones is described, to inform on the molecular mechanisms underpinning OMP assembly. XL-MS data are especially powerful when used to complement high-resolution structural data, data from structural prediction or to drive molecular modeling of proteins and protein assemblies. The approach described here could be applied to the study of any protein assembly (including other membrane proteins).


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Dobramento de Proteína
3.
Cell ; 187(9): 2250-2268.e31, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554706

RESUMO

Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.


Assuntos
Adenosina Trifosfatases , Replicação do DNA , Instabilidade Genômica , Proteostase , Humanos , Adenosina Trifosfatases/metabolismo , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Células HEK293 , Proteínas de Ciclo Celular/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética
4.
Nature ; 627(8003): 437-444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383789

RESUMO

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Homeostase , Membranas Intracelulares/metabolismo , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , RNA de Transferência/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/ultraestrutura , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura
5.
Sci Rep ; 14(1): 3838, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360830

RESUMO

Though new targeted therapies for colorectal cancer, which progresses from local intestinal tumors to metastatic disease, are being developed, tumor specificity remains an important problem, and side effects a major concern. Here, we show that the protein-fatty acid complex BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) can act as a peroral treatment for colorectal cancer. ApcMin/+ mice, which carry mutations relevant to hereditary and sporadic human colorectal cancer, that received BAMLET in the drinking water showed long-term protection against tumor development and decreased expression of tumor growth-, migration-, metastasis- and angiogenesis-related genes. BAMLET treatment via drinking water inhibited the Wnt/ß-catenin and PD-1 signaling pathways and prolonged survival without evidence of toxicity. Systemic disease in the lungs, livers, spleens, and kidneys, which accompanied tumor progression, was inhibited by BAMLET treatment. The metabolic response to BAMLET included carbohydrate and lipid metabolism, which were inhibited in tumor prone ApcMin/+ mice and weakly regulated in C57BL/6 mice, suggesting potential health benefits of peroral BAMLET administration in addition to the potent antitumor effects. Together, these findings suggest that BAMLET administration in the drinking water maintains antitumor pressure by removing emergent cancer cells and reprogramming gene expression in intestinal and extra-intestinal tissues.


Assuntos
Neoplasias Colorretais , Água Potável , Camundongos , Humanos , Animais , Bovinos , Camundongos Endogâmicos C57BL , Transdução de Sinais , beta Catenina
6.
Neurobiol Dis ; 191: 106403, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182074

RESUMO

Loss-of-function mutations in the GNAL gene are responsible for DYT-GNAL dystonia. However, how GNAL mutations contribute to synaptic dysfunction is still unclear. The GNAL gene encodes the Gαolf protein, an isoform of stimulatory Gαs enriched in the striatum, with a key role in the regulation of cAMP signaling. Here, we used a combined biochemical and electrophysiological approach to study GPCR-mediated AC-cAMP cascade in the striatum of the heterozygous GNAL (GNAL+/-) rat model. We first analyzed adenosine type 2 (A2AR), and dopamine type 1 (D1R) receptors, which are directly coupled to Gαolf, and observed that the total levels of A2AR were increased, whereas D1R level was unaltered in GNAL+/- rats. In addition, the striatal isoform of adenylyl cyclase (AC5) was reduced, despite unaltered basal cAMP levels. Notably, the protein expression level of dopamine type 2 receptor (D2R), that inhibits the AC5-cAMP signaling pathway, was also reduced, similar to what observed in different DYT-TOR1A dystonia models. Accordingly, in the GNAL+/- rat striatum we found altered levels of the D2R regulatory proteins, RGS9-2, spinophilin, Gß5 and ß-arrestin2, suggesting a downregulation of D2R signaling cascade. Additionally, by analyzing the responses of striatal cholinergic interneurons to D2R activation, we found that the receptor-mediated inhibitory effect is significantly attenuated in GNAL+/- interneurons. Altogether, our findings demonstrate a profound alteration in the A2AR/D2R-AC-cAMP cascade in the striatum of the rat DYT-GNAL dystonia model, and provide a plausible explanation for our previous findings on the loss of dopamine D2R-dependent corticostriatal long-term depression.


Assuntos
Distonia , Distúrbios Distônicos , Ratos , Animais , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Dopamina/metabolismo , AMP Cíclico/metabolismo , Distonia/genética , Transdução de Sinais/fisiologia , Corpo Estriado/metabolismo , Receptores Dopaminérgicos/metabolismo , Isoformas de Proteínas/metabolismo
7.
Biology (Basel) ; 12(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998030

RESUMO

River artificial fragmentation is arguably the most imperilling threat for freshwater-dependent fish species. Fish need to be able to freely move along river networks as not only spawning grounds but also refuge and feeding areas may be spatially and temporally separated. This incapacity of free displacement may result in genetic depletion of some populations, density reduction and even community changes, which may in turn affect how meta-community balances are regulated, potentially resulting in functional resilience reduction and ecosystem processes' malfunction. Fishways are the most common and widely used method to improve connectivity for fish species. These structures allow fish to negotiate full barriers, thus reducing their connectivity impairment. Among all technical fishway types, vertical slot fishways (VSF) are considered to be the best solution, as they remain operational even with fluctuating water discharges and allow fish to negotiate each cross-wall at their desired depth. In the present study, we collected both published and original data on fish experiments within VSF, to address two questions, (1) What variables affect fish passage during experimental fishway studies? and (2) What is the best VSF configuration? We used Bayesian Generalized Mixed Models accounting for random effects of non-controlled factors, limiting inherent data dependencies, that may influence the model outcome. Results highlight that fish size, regardless of the species, is a good predictor of fishway negotiation success. Generally, multiple slot fishways with one orifice proved to be the best solution. Future work should be focused on small-sized fish to further improve the design of holistic fishways.

8.
Nat Chem Biol ; 19(11): 1406-1414, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770699

RESUMO

The flavoenzyme nicotine oxidoreductase (NicA2) is a promising injectable treatment to aid in the cessation of smoking, a behavior responsible for one in ten deaths worldwide. NicA2 acts by degrading nicotine in the bloodstream before it reaches the brain. Clinical use of NicA2 is limited by its poor catalytic activity in the absence of its natural electron acceptor CycN. Without CycN, NicA2 is instead oxidized slowly by dioxygen (O2), necessitating unfeasibly large doses in a therapeutic setting. Here, we report a genetic selection strategy that directly links CycN-independent activity of NicA2 to growth of Pseudomonas putida S16. This selection enabled us to evolve NicA2 variants with substantial improvement in their rate of oxidation by O2. The encoded mutations cluster around a putative O2 tunnel, increasing flexibility and accessibility to O2 in this region. These mutations further confer desirable clinical properties. A variant form of NicA2 is tenfold more effective than the wild type at degrading nicotine in the bloodstream of rats.


Assuntos
Nicotina , Pseudomonas putida , Ratos , Animais , Oxigênio , Oxirredutases/metabolismo , Oxirredução
9.
Curr Neuropharmacol ; 21(11): 2310-2322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37464831

RESUMO

Dystonia, the third most common movement disorder, refers to a heterogeneous group of neurological diseases characterized by involuntary, sustained or intermittent muscle contractions resulting in repetitive twisting movements and abnormal postures. In the last few years, several studies on animal models helped expand our knowledge of the molecular mechanisms underlying dystonia. These findings have reinforced the notion that the synaptic alterations found mainly in the basal ganglia and cerebellum, including the abnormal neurotransmitters signalling, receptor trafficking and synaptic plasticity, are a common hallmark of different forms of dystonia. In this review, we focus on the major contribution provided by rodent models of DYT-TOR1A, DYT-THAP1, DYT-GNAL, DYT/ PARK-GCH1, DYT/PARK-TH and DYT-SGCE dystonia, which reveal that an abnormal motor network and synaptic dysfunction represent key elements in the pathophysiology of dystonia.


Assuntos
Distonia , Distúrbios Distônicos , Animais , Gânglios da Base , Cerebelo , Modelos Animais de Doenças
11.
Essays Biochem ; 67(2): 147-149, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988080

RESUMO

Mass spectrometry (MS) is now established as an analytical tool to interrogate the structure and dynamics of proteins and their assemblies. An array of MS-based technologies has been developed, with each providing unique information pertaining to protein structure, and forming the heart of integrative structural biology studies. This special issue includes a collection of review articles that discuss both established and emerging structural MS methodologies, along with examples of how these technologies are being deployed to interrogate protein structure and function. Combined, this collection highlights the immense potential of the structural MS toolkit in the study of molecular mechanisms underpinning cellular homeostasis and disease.


Assuntos
Bioquímica , Proteínas , Espectrometria de Massas/métodos , Proteínas/química , Bioquímica/métodos , Biologia Molecular
12.
Protein Sci ; 32(2): e4563, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36605018

RESUMO

Nerve growth factor (NGF), the prototypical neurotrophic factor, is involved in the maintenance and growth of specific neuronal populations, whereas its precursor, proNGF, is involved in neuronal apoptosis. Binding of NGF or proNGF to TrkA, p75NTR , and VP10p receptors triggers complex intracellular signaling pathways that can be modulated by endogenous small-molecule ligands. Here, we show by isothermal titration calorimetry and NMR that ATP binds to the intrinsically disordered pro-peptide of proNGF with a micromolar dissociation constant. We demonstrate that Mg2+ , known to play a physiological role in neurons, modulates the ATP/proNGF interaction. An integrative structural biophysics analysis by small angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry unveils that ATP binding induces a conformational rearrangement of the flexible pro-peptide domain of proNGF. This suggests that ATP may act as an allosteric modulator of the overall proNGF conformation, whose likely distinct biological activity may ultimately affect its physiological homeostasis.


Assuntos
Fator de Crescimento Neural , Neurônios , Fator de Crescimento Neural/química , Fator de Crescimento Neural/metabolismo , Domínios Proteicos , Neurônios/metabolismo , Trifosfato de Adenosina
13.
Hip Int ; 33(6): 1100-1106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36253960

RESUMO

INTRODUCTION: Proximal femur geometry (PFG) represents an important risk factor for the occurrence of hip fractures. There are currently few studies regarding the correlation between PFG and the occurrence of a specific fracture subtype, and those that exist have small cohorts and present with different methodologies and contradictory results. Therefore, there is no consensus in the literature regarding this topic. The present study aimed to establish the contribution of the PFG in the occurrence of different subtypes of proximal femur fractures (PFF): intertrochanteric, neck and subtrochanteric. METHODS: Analysis of 1022 plain anteroposterior pelvic radiographs of patients consecutively admitted to the emergency room of a Level 1 Trauma Centre between 2013 and 2019 after low energy trauma who presented with PFF and underwent surgical treatment. Patients were analysed considering age, gender and subtype of PFF (intertrochanteric, neck or subtrochanteric). Radiological parameters including cervicodiaphyseal angle (CDA), horizontal offset (HO), femoral neck width (FNW), femoral neck length (FNL), great trochanter-pubic symphysis distance (GTPSD), acetabular teardrop distance (ATD) and width of the intertrochanteric region (WIR) were measured and compared between the different subtypes of fractures (7154 measurements). Statistical analysis was conducted recurring to absolute measurements and measurements ratios. The correlation was assessed using t-test. RESULTS: There were statistically significant differences in proximal femur geometry between the different subtypes of fractures. Patients presenting with femoral neck fractures had greater CDA (132.5 ± 6.9 vs. 130.0 ± 7.3; p < 0.001) and lower HO (45.8 ± 7.4 vs. 49.0 ± 8.0; p < 0.001), HO/ATD (0.34 ± 0.068 vs. 0.37 ± 0.072; p < 0.001) and HO/GTPSD (0.26 ± 0.049 vs. 0.28 ± 0.039; p < 0.001) than patients with intertrochanteric/subtrochanteric fractures. CONCLUSIONS: PFG represents an important contributor to the occurrence of different fracture subtypes. Femoral neck fractures are associated with greater CDA and lower HO, HO/ATD and HO/GTPSD when compared to intertrochanteric or subtrochanteric fractures.


Assuntos
Artroplastia de Quadril , Fraturas do Colo Femoral , Fraturas do Quadril , Fraturas Proximais do Fêmur , Humanos , Fêmur/patologia , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/cirurgia , Fraturas do Quadril/epidemiologia , Fraturas do Colo Femoral/diagnóstico por imagem , Fraturas do Colo Femoral/cirurgia , Fraturas do Colo Femoral/epidemiologia , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/patologia
14.
Appl Neuropsychol Adult ; 30(5): 614-621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34797747

RESUMO

OBJECTIVE: Time is critical with any out of hospital cardiac arrest (OHCA). The possibility of brain cell death increases, and the likelihood of a "good" outcome decreases with time. The most prominent impairments involve memory and attentional difficulties. Limited research and few cases have shown positive cognitive results following an OHCA to the extent that this case study depicts. METHOD: The current case study presents a right-handed male in his late 40s, with master's and law degrees, and a high-level functioning in the workplace who experienced an OHCA. He was treated for his OHCA and subsequently underwent neuropsychological testing less than 2 months following his hospital discharge. RESULTS: Expected results suggest impairments in key cognitive areas; however, a neuropsychological exam less than 2-months post-incident, testing pre-morbid IQ, overall cognitive ability, processing speed, attention, executive functioning, language, visuospatial abilities, and memory; each showing normal or better results. Additionally, self and collateral report questionnaires examining cognitive and emotional functioning reported no difficulties and no major changes since his cardiac arrest. CONCLUSIONS: We speculate that this patient's exceptional outcome might be due to his cognitive reserve, and the immediateness of his intervention (5-10 min of CPR and return-of-spontaneous-circulation from an AED shock) and use of a saline cooling procedure upon arrival to the hospital. Overall, we highlight a patient with a remarkable cognitive outcome, utilizing data from neuropsychological testing within 2-months post-incident, and propose protective factors in neuropsychological functioning following an OHCA.


Assuntos
Reanimação Cardiopulmonar , Transtornos Cognitivos , Parada Cardíaca Extra-Hospitalar , Humanos , Masculino , Parada Cardíaca Extra-Hospitalar/complicações , Parada Cardíaca Extra-Hospitalar/terapia , Reanimação Cardiopulmonar/métodos , Cognição , Função Executiva
15.
Cureus ; 15(12): e51424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38299129

RESUMO

It is uncertain whether prior Kasai procedures negatively impact the outcomes of liver transplantation (LT). The prior meta-analysis did not distinguish between Kasai early failure (K-EF) and late failure (K-LF). Numerous studies have been recently published; therefore, we perform a systematic review and meta-analysis. We searched PubMed and Embase databases to identify studies comparing the outcomes of biliary atresia (BA) patients undergoing primary LT versus patients with prior Kasai procedures. Subgroup analysis was done at the time of Kasai failure (early vs. late). Twenty-five studies comprising 6,408 patients receiving LT were included in the analysis. We found a statistically significant increase in one-year graft survival in K-LF versus primary liver transplant (pLT) (P = 0.0003). One-year patient survival was also increased in K-LF, although not statistically significant (P = 0.09). No difference in the one- and five-year graft and patient survival, reoperation rate, infection, and biliary complication was seen in pLT vs overall prior Kasai (K-EF and K-LF). These results suggest that prior kasai procedure does not negatively impact the outcome of LT. In addition, BA patients with prior Kasai undergoing LT later in life tend to perform better than primary liver transplants.

16.
J Biol Chem ; 298(12): 102624, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272646

RESUMO

Broadly neutralizing antibodies have huge potential as novel antiviral therapeutics due to their ability to recognize highly conserved epitopes that are seldom mutated in viral variants. A subset of bovine antibodies possess an ultralong complementarity-determining region (CDR)H3 that is highly adept at recognizing such conserved epitopes, but their reactivity against Sarbecovirus Spike proteins has not been explored previously. Here, we use a SARS-naïve library to isolate a broadly reactive bovine CDRH3 that binds the receptor-binding domain of SARS-CoV, SARS-CoV-2, and all SARS-CoV-2 variants. We show further that it neutralizes viruses pseudo-typed with SARS-CoV Spike, but this is not by competition with angiotensin-converting enzyme 2 (ACE2) binding. Instead, using differential hydrogen-deuterium exchange mass spectrometry, we demonstrate that it recognizes the major site of vulnerability of Sarbecoviruses. This glycan-shielded cryptic epitope becomes available only transiently via interdomain movements of the Spike protein such that antibody binding triggers destruction of the prefusion complex. This proof of principle study demonstrates the power of in vitro expressed bovine antibodies with ultralong CDRH3s for the isolation of novel, broadly reactive tools to combat emerging pathogens and to identify key epitopes for vaccine development.


Assuntos
Anticorpos Antivirais , Regiões Determinantes de Complementaridade , Glicoproteína da Espícula de Coronavírus , Animais , Bovinos , Anticorpos Neutralizantes , Anticorpos Antivirais/genética , Regiões Determinantes de Complementaridade/genética , Epitopos/genética , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Glicoproteína da Espícula de Coronavírus/genética
17.
Sci Rep ; 12(1): 14537, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008455

RESUMO

Angiogenesis is a critical process in tumor progression. Inhibition of angiogenesis by blocking VEGF signaling can impair existing tumor vessels and halt tumor progression. However, the benefits are transient, and most patients who initially respond to these therapies develop resistance. Accordingly, there is a need for new anti-angiogenesis therapeutics to delay the processes of resistance or eliminate the resistive effects entirely. This manuscript presents the results of a screen of the National Institutes of Health Clinical Collections Libraries I & II (NIHCCLI&II) for novel angiogenesis inhibitors. The 727 compounds of the NIHCCLI&II library were screened with a high-throughput drug discovery platform (HTP) developed previously with angiogenesis-specific protocols utilizing zebrafish. The screen resulted in 14 hit compounds that were subsequently narrowed down to one, with PD 81,723 chosen as the lead compound. PD 81,723 was validated as an inhibitor of angiogenesis in vivo in zebrafish and in vitro in human umbilical vein endothelial cells (HUVECs). Zebrafish exposed to PD 81,723 exhibited several signs of a diminished endothelial network due to the inhibition of angiogenesis. Immunochemical analysis did not reveal any significant apoptotic or mitotic activity in the zebrafish. Assays with cultured HUVECs elucidated the ability of PD 81,723 to inhibit capillary tube formation, migration, and proliferation of endothelial cells. In addition, PD 81,723 did not induce apoptosis while significantly down regulating p21, AKT, VEGFR-2, p-VEGFR-2, eNOS, and p-eNOS, with no notable change in endogenous VEGF-A in cultured HUVECs.


Assuntos
Inibidores da Angiogênese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra
18.
J Pers Med ; 12(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887667

RESUMO

Background: To investigate the effects of the COVID-19 lockdowns on the vasculopathic population. Methods: The Divisions of Vascular Surgery of the southern Italian peninsula joined this multicenter retrospective study. Each received a 13-point questionnaire investigating the hospitalization rate of vascular patients in the first 11 months of the COVID-19 pandemic and in the preceding 11 months. Results: 27 out of 29 Centers were enrolled. April-December 2020 (7092 patients) vs. 2019 (9161 patients): post-EVAR surveillance, hospitalization for Rutherford category 3 peripheral arterial disease, and asymptomatic carotid stenosis revascularization significantly decreased (1484 (16.2%) vs. 1014 (14.3%), p = 0.0009; 1401 (15.29%) vs. 959 (13.52%), p = 0.0006; and 1558 (17.01%) vs. 934 (13.17%), p < 0.0001, respectively), while admissions for revascularization or major amputations for chronic limb-threatening ischemia and urgent revascularization for symptomatic carotid stenosis significantly increased (1204 (16.98%) vs. 1245 (13.59%), p < 0.0001; 355 (5.01%) vs. 358 (3.91%), p = 0.0007; and 153 (2.16%) vs. 140 (1.53%), p = 0.0009, respectively). Conclusions: The suspension of elective procedures during the COVID-19 pandemic caused a significant reduction in post-EVAR surveillance, and in the hospitalization of asymptomatic carotid stenosis revascularization and Rutherford 3 peripheral arterial disease. Consequentially, we observed a significant increase in admissions for urgent revascularization for symptomatic carotid stenosis, as well as for revascularization or major amputations for chronic limb-threatening ischemia.

19.
STAR Protoc ; 3(3): 101562, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35874470

RESUMO

Solvent accessibilities of and distances between protein residues measured by pulsed-EPR approaches provide high-resolution information on dynamic protein motions. We describe protocols for the purification and site-directed spin labeling of integral membrane proteins. In our protocol, peptide-level HDX-MS is used as a precursor to guide single-residue resolution ESEEM accessibility measurements and spin labeling strategies for EPR applications. Exploiting the pentameric MscL channel as a model, we discuss the use of cwEPR, DEER/PELDOR, and ESEEM spectroscopies to interrogate membrane protein dynamics. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).


Assuntos
Proteínas de Membrana , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas de Membrana/química , Marcadores de Spin
20.
Nat Commun ; 13(1): 4126, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840586

RESUMO

ATP-independent chaperones like trigger factor are generally assumed to play passive roles in protein folding by acting as holding chaperones. Here we show that trigger factor plays a more active role. Consistent with a role as an aggregation inhibiting chaperone, we find that trigger factor rapidly binds to partially folded glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and prevents it from non-productive self-association by shielding oligomeric interfaces. In the traditional view of holding chaperone action, trigger factor would then be expected to transfer its client to a chaperone foldase system for complete folding. Unexpectedly, we noticed that GAPDH folds into a monomeric but otherwise rather native-like intermediate state while trigger factor-bound. Upon release from trigger factor, the mostly folded monomeric GAPDH rapidly self-associates into its native tetramer and acquires enzymatic activity without needing additional folding factors. The mechanism we propose here for trigger factor bridges the holding and folding activities of chaperone function.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...